首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   369篇
  免费   66篇
  国内免费   115篇
地球物理   72篇
地质学   379篇
海洋学   14篇
天文学   4篇
综合类   14篇
自然地理   67篇
  2024年   3篇
  2023年   12篇
  2022年   10篇
  2021年   11篇
  2020年   14篇
  2019年   16篇
  2018年   9篇
  2017年   6篇
  2016年   5篇
  2015年   8篇
  2014年   12篇
  2013年   19篇
  2012年   36篇
  2011年   9篇
  2010年   20篇
  2009年   17篇
  2008年   29篇
  2007年   44篇
  2006年   56篇
  2005年   28篇
  2004年   28篇
  2003年   22篇
  2002年   13篇
  2001年   20篇
  2000年   6篇
  1999年   18篇
  1998年   12篇
  1997年   12篇
  1996年   11篇
  1995年   11篇
  1994年   3篇
  1993年   6篇
  1992年   3篇
  1991年   6篇
  1990年   4篇
  1989年   5篇
  1988年   1篇
  1987年   3篇
  1985年   1篇
  1954年   1篇
排序方式: 共有550条查询结果,搜索用时 15 毫秒
1.
The Emeishan continental flood basalt (ECFB) sequence in Dongchuan, SW China comprises a basal tephrite unit overlain by an upper tholeiitic basalt unit. The upper basalts have high TiO2 contents (3.2–5.2 wt.%), relatively high rare-earth element (REE) concentrations (40 to 60 ppm La, 12.5 to 16.5 ppm Sm, and 3 to 4 ppm Yb), moderate Zr/Nb and Nb/La ratios (9.3–10.2 and 0.6–0.9, respectively) and relatively high Nd (t) values, ranging from − 0.94 to 2.3, and are comparable to the high-Ti ECFB elsewhere. The tephrites have relatively high P2O5 (1.3–2.0 wt.%), low REE concentrations (e.g., 17 to 23 ppm La, 4 to 5.3 ppm Sm, and 2 to 3 ppm Yb), high Nb/La (2.0–3.9) ratios, low Zr/Nb ratios (2.3–4.2), and extremely low Nd (t) values (mostly ranging from − 10.6 to − 11.1). The distinct compositional differences between the tephrites and the overlying tholeiitic basalts cannot be explained by either fractional crystallization or crustal contamination of a common parental magma. The tholeiitic basalts formed by partial melting of the Emeishan plume head at a depth where garnet was stable, perhaps > 80 km. We propose that the tephrites were derived from magmas formed when the base of the previously metasomatized, volatile-mineral bearing subcontinental lithospheric mantle was heated by the upwelling mantle plume.  相似文献   
2.
华北克拉通破坏与岩石圈减薄   总被引:20,自引:2,他引:18  
嵇少丞  王茜  许志琴 《地质学报》2008,82(2):174-193
古太古代(约4.0 Ga)时地球上可能只有一个超级大陆, 它的岩石圈厚度高达400 km。在早元古代,这个超级大陆减薄、裂解成十几块,每块中心是太古宙岩石,边缘是元古宙岩石,且各块厚度不等(150~350km)。从元古宙之后这些被称之为稳定克拉通的大陆岩石圈就一直漂游在地幔软流圈之上。中国华北地块就是这些克拉通之一,与众不同的是它在中生代时遭受了第二次破坏,岩石圈厚度从古生代时的180~200 km 减少到现今的80~100 km。本文作者从流变学的视角出发,围绕华北克拉通破坏和岩石圈减薄这一核心问题,从  相似文献   
3.
Lithium concentrations and isotopic compositions of olivine and 87Sr/86Sr and 143Nd/144Nd of coexisting clinopyroxene from peridotite xenoliths from the Quaternary Labait volcano, Tanzania, document the influence of rift-related metasomatism on the ancient cratonic mantle. Olivines show negative correlations between Fo content and both δ7Li and Li concentrations. Olivines in iron-rich peridotites (Fo85–87) have high Li concentrations (3.2–4.8 ppm) and heavy δ7Li (+5.2 to +6.6). In contrast, olivines in ancient, refractory peridotites have lower Li concentrations (∼2 ppm) and relatively light δ7Li (+2.6 to +3.5). This reflects mixing between ancient, refractory cratonic lithosphere and asthenosphere-derived rift magmas. A uniquely fertile, deformed, high-temperature garnet lherzolite, interpreted to be from the base of the lithosphere, has a 87Sr/86Sr of 0.7029 and 143Nd/144Nd of 0.51286, similar to HIMU oceanic basalts. It provides the best estimate of the Sr–Nd isotope composition of the upwelling mantle (i.e., plume, sensu lato) underlying this portion of the East African Rift, and is slightly less radiogenic compared to previous estimates of the plume that were based on rift basalts. Although elevated δ7Li are not exclusive to HIMU source regions, the data collectively indicate that the plume beneath Labait has HIMU characteristics in Sr, Nd and Li isotope composition. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
4.
The ages of subcontinental lithospheric mantle beneath the North China and South China cratons are less well-constrained than the overlying crust. We report Re–Os isotope systematics of mantle xenoliths entrained in Paleozoic kimberlites and Mesozoic basalts from eastern China. Peridotite xenoliths from the Fuxian and Mengyin Paleozoic diamondiferous kimberlites in the North China Craton give Archean Re depletion ages of 2.6–3.2 Ga and melt depletion ages of 2.9–3.4 Ga. No obvious differences in Re and Os abundances, Os isotopic ratios and model ages are observed between spinel-facies and garnet-facies peridotites from both kimberlite localities. The Re–Os isotopic data, together with the PGE concentrations, demonstrate that beneath the Archean continental crust of the eastern North China Craton, Archean lithospheric mantle of spinel- to diamond-facies existed without apparent compositional stratification during the Paleozoic. The Mesozoic and Cenozoic basalt-borne peridotite and pyroxenite xenoliths, on the other hand, show geochemical features indicating metasomatic enrichment, along with a large range of the Re–Os isotopic model ages from Proterozoic to Phanerozoic. These features indicate that lithospheric transformation or refertilization through melt-peridotite interaction could be the primary mechanism for compositional changes during the Phanerozoic, rather than delamination or thermal-mechanical erosion, despite the potential of these latter processes to play an important role for the loss of garnet-facies mantle. A fresh garnet lherzolite xenolith from the Yangtze Block has a Re depletion age of ∼1.04 Ga, much younger than overlying Archean crustal rocks but the same Re depletion ages as spinel lherzolite xenoliths from adjacent Mesozoic basalts, indicating Neoproterozoic resetting of the Re–Os system in the South China Craton.  相似文献   
5.
Both adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province, eastern China are associated with Cretaceous Cu–Au mineralization. The Shaxi quartz diorite porphyrites exhibit adakite-like geochemical features, such as light rare earth element (LREE) enrichment, heavy REE (HREE) depletion, high Al2O3, MgO, Sr, Sr / Y and La / Yb values, and low Y and Yb contents. They have low εNd(t) values (− 3.46 to − 6.28) and high (87Sr / 86Sr)i ratios (0.7051–0.7057). Sensitive High-Resolution Ion Microprobe (SHRIMP) zircon analyses indicate a crystallization age of 136 ± 3 Ma for the adakitic rocks. Most volcanic rocks and the majority of monzonites and syenites in the Luzong area are K-rich (or shoshonitic) and were also produced during the Cretaceous (140–125 Ma). They are enriched in LREE and large-ion lithophile elements, and depleted in Ti, and Nb and Ba and exhibit relatively lower εNd(t) values ranging from − 4.65 to − 7.03 and relatively higher (87Sr / 86Sr)i ratios varying between 0.7057 and 0.7062. The shoshonitic and adakitic rocks in the Luzong area have similar Pb isotopic compositions (206Pb / 204Pb = 17.90–18.83, 207Pb / 204Pb = 15.45–15.62 and 208Pb / 204Pb = 38.07–38.80). Geological data from the Luzong area suggest that the Cretaceous igneous rocks are distributed along NE fault zones (e.g., Tanlu and Yangtze River fault zones) in eastern China and were likely formed in an extensional setting within the Yangtze Block. The Shaxi adakitic rocks were probably derived by the partial melting of delaminated lower crust at pressures equivalent to crustal thickness of > 50 km (i.e., 1.5 GPa), possibly leaving rutile-bearing eclogitic residue. The shoshonitic magmas, in contrast, originated mainly from an enriched mantle metasomatized by subducted oceanic sediments. They underwent early high-pressure (> 1.5 GPa) fractional crystallization at the boundary between thickened (> 50 km) lower crust and lithospheric mantle and late low-pressure (< 1.5 GPa) fractional crystallization in the shallow (< 50 km) crust. The adakitic and shoshonitic rocks appear to be linked to an intra-continental extensional setting where partial melting of enriched mantle and delaminated lower crust was probably controlled by lithospheric thinning and upwelling of hot asthenosphere along NE fault zones (e.g., Tanlu and Yangtze River fault zones) in eastern China. Both the shoshonitic and adakitic magmas were fertile with respect to Cu–Au mineralization.  相似文献   
6.
辽东地区玄武岩的K-Ar定年结果表明,曲家屯玄武岩形成于晚白垩世,K-Ar年龄为81.58±2.46Ma;乱石山子玄武岩形成于古近纪,K-Ar年龄为58.36±1.64Ma。本区玄武岩含有丰富的橄榄石、单斜辉石和角闪石捕虏晶。乱石山子玄武岩中橄榄石捕虏晶的Mg^#值(79.5-88.5之间,平均值为84)较曲家屯玄武岩中橄榄石捕虏晶Mg^#值(77.0~79.8之间,平均值为78.4)偏高;单斜辉石捕虏晶为透辉石,其从核部到边部的Mg^#等变化趋势与橄榄石类似;斜方辉石捕虏晶为占铜辉石,其Mg^#值介于85.2-87.6之间,平均值为86.4。捕虏晶发育的环状裂隙、扭折带、矿物成分环带以及捕虏晶与主岩Mg^#值之间的不平衡均暗示它们为玄武质岩浆上升捕获的早期岩浆晶出矿物的堆晶体。玄武岩的岩石地球化学分析结果表明:(1)它们属于碱性系列,为碱性玄武岩,曲家屯玄武岩较乱石山子玄武岩贫硅、镁,富钙、铝,它们均具有原始岩浆的特征;(2)二者具有相似的稀土元素配分模式,但曲家屯玄武岩轻稀土元素总量更高,且轻重稀土元素分离程度高;(3)二者具有相似的Sr-Nd同位素组成,Isr和εNd(t)值分别介于0.7039~0.7045和+1.60~+3.69,反映了亏损的岩石圈地幔特征。  相似文献   
7.
库鲁克塔格地区二叠纪脉岩群非常发育,主要岩石类型是辉绿岩,并有少量的斜闪煌斑岩、斜长玢岩和花岗斑岩。花岗斑岩属高钾钙碱性系列,具有A型花岗岩的稀土元素和微量元素地球化学特征;斜长玢岩的地球化学特征与花岗斑岩相似,二者都亏损U、Nb、Ta。斜闪煌斑岩的岩石化学组成属过碱性系列,显著富集轻稀土元素和大离子亲石元素。辉绿岩的岩石化学组成以钙碱性系列为主,稀土元素总量变化较大,Cs、Rb、Ba、Th元素丰度变化大,普遍亏损U、Nb、Ta。研究证明,辉绿岩脉的这些地球化学特征都与同化混染作用有关,大离子亲石元素丰度的变化还与热液蚀变有关。辉绿岩具有富集型Nd、Sr同位素组成,且变化范围大,是岩浆源区同化混染作用的结果。它们的铅同位素组成属低U(Th)/Pb值的正常铅,主要受混染物控制,并不代表源区特征。库鲁克塔格地区岩石圈地幔Nd、Sr、Pb同位素比塔里木板块西缘岩石圈地幔的富集程度更高,且变化范围大,反映了这两个地区岩石圈地幔的演化历史存在明显差异。  相似文献   
8.
9.
长江中下游东段庐枞、怀宁、繁昌、铜陵和宁芜地区的中基性岩属于碱性系列 ,具有高的U ,Th含量和Th/Pb ,U/Pb比值 ,分别平均为 2 .82× 10 -6,9.5 6× 10 -6和 0 .6 35 ,0 .184。样品的初始铅同位素 (130Ma)组成为 :(2 0 6Pb/ 2 0 4Pb) i=17.6 5~ 18.6 0 ,(2 0 7Pb/ 2 0 4Pb) i=15 .4 2~ 15 .5 0 ,(2 0 8Pb/ 2 0 4Pb) i=37.6 7~ 38.0 4。形成中基性岩的原始岩浆来源于富集的岩石圈地幔 ,具有EMⅠ和EMⅡ ,且以EMⅡ为主的特征。和长江中下游西段黄石地区以及大别地块西南部玄武岩的比较表明 ,长江中下游地区岩石圈地幔高的Th/Pb和U/Pb比值可能和俯冲板片析出流体的交代有关。晚中生代时期 ,华北板块岩石圈地幔以EMⅠ特征为主 ,华南板块岩石圈地幔以EMⅡ特征为主 ,岩石圈地幔性质的区域性分布与印支期扬子板块深俯冲事件密切相关。虽然中国东部新生代玄武岩因岩石圈大规模减薄表现了亏损特征 ,但残留的富集岩石圈地幔在中国东部新生代玄武岩的Pb同位素中仍有所反映  相似文献   
10.
东南沿海地区古近纪大陆岩石圈地幔特征及成因   总被引:3,自引:0,他引:3  
东南沿海地区新生代玄武岩中的橄榄岩包体来自岩石圈地幔 ,上地幔橄榄岩包体的岩石学及地球化学特征都记录了地幔演化的历史。普宁橄榄岩包体斜方辉石含量与太古宙克拉通地幔类似 ,但在矿物学、REE、痕量元素和Sr Nd同位素上又与太古宙岩石圈地幔不同。橄榄岩包体的岩相学、矿物学、REE、痕量元素特征都提供了含H2 O富Si流体交代橄榄岩的证据 ,这种流体可能主要是洋壳物质局部熔融而成。流体交代使橄榄岩富Si,同时富Sr、Pb和强不相容元素等大洋岩石圈物质。这表明普宁大陆岩石圈地幔既保留太古宙岩石圈地幔的特征 ,又具有大洋俯冲地幔的特征 ,它是古老岩石圈地幔向大洋岩石圈地幔转换的一部分 ,这种转换可能是大洋岩石圈与大陆岩石圈地幔相互作用的结果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号